Random Walks on Regular and Irregular Graphs
نویسندگان
چکیده
For an undirected graph and an optimal cyclic list of all its vertices, the cyclic cover time is the expected time it takes a simple random walk to travel from vertex to vertex along the list, until it completes a full cycle. The main result of this paper is a characterization of the cyclic cover time in terms of simple and easy to compute graph properties. Namely, for any connected graph, the cyclic cover time is (n 2 d ave (d ?1) ave), where n is the number of vertices in the graph, d ave is the average degree of its vertices, and (d ?1) ave is the average of the inverse of the degree of its vertices. Other results obtained in the processes of proving the main theorem are a similar characterization of minimum resistance spanning trees of graphs, improved bounds on the cover time of graphs, and a simpliied proof that the maximum commute time in any connected graph is at most 4n 3 =27 + o(n 3).
منابع مشابه
CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملMixing Rates of Random Walks with Little Backtracking
Many regular graphs admit a natural partition of their edge set into cliques of the same order such that each vertex is contained in the same number of cliques. In this paper, we study the mixing rate of certain random walks on such graphs and we generalize previous results of Alon, Benjamini, Lubetzky and Sodin regarding the mixing rates of non-backtracking random walks on regular graphs.
متن کاملRandom and Pseudo-Random Walks on Graphs
Random walks on graphs have turned out to be a powerful tool in the design of algorithms and other applications. In particular, expander graphs, which are graphs on which random walks have particularly good properties, are extremely useful in complexity and other areas of computer science. In this chapter we study random walks on general regular graphs, leading to a the randomized logspace algo...
متن کاملPeriodic Walks on Large Regular Graphs and Random Matrix Theory
We study the distribution of the number of (non-backtracking) periodic walks on large regular graphs. We propose a formula for the ratio between the variance of the number of t-periodic walks and its mean, when the cardinality of the vertex set V and the period t approach ∞ with t/V → τ for any τ . This formula is based on the conjecture that the spectral statistics of the adjacency eigenvalues...
متن کاملNon-Backtracking Random Walks and a Weighted Ihara’s Theorem
We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency matrix of a graph to a matrix related to non-backtracking walks on the directed edges. We prove a weighted version of Ihara’s Theorem which relates the transition probability matrix of a non-ba...
متن کاملOn the Meeting Time for Two Random Walks on a Regular Graph
We provide an analysis of the expected meeting time of two independent random walks on a regular graph. For 1-D circle and 2-D torus graphs, we show that the expected meeting time can be expressed as the sum of the inverse of non-zero eigenvalues of a suitably defined Laplacian matrix. We also conjecture based on empirical evidence that this result holds more generally for simple random walks o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 9 شماره
صفحات -
تاریخ انتشار 1996